MORC family ATPases required for heterochromatin condensation and gene silencing.

نویسندگان

  • Guillaume Moissiard
  • Shawn J Cokus
  • Joshua Cary
  • Suhua Feng
  • Allison C Billi
  • Hume Stroud
  • Dylan Husmann
  • Ye Zhan
  • Bryan R Lajoie
  • Rachel Patton McCord
  • Christopher J Hale
  • Wei Feng
  • Scott D Michaels
  • Alison R Frand
  • Matteo Pellegrini
  • Job Dekker
  • John K Kim
  • Steven E Jacobsen
چکیده

Transposable elements (TEs) and DNA repeats are commonly targeted by DNA and histone methylation to achieve epigenetic gene silencing. We isolated mutations in two Arabidopsis genes, AtMORC1 and AtMORC6, which cause derepression of DNA-methylated genes and TEs but no losses of DNA or histone methylation. AtMORC1 and AtMORC6 are members of the conserved Microrchidia (MORC) adenosine triphosphatase (ATPase) family, which are predicted to catalyze alterations in chromosome superstructure. The atmorc1 and atmorc6 mutants show decondensation of pericentromeric heterochromatin, increased interaction of pericentromeric regions with the rest of the genome, and transcriptional defects that are largely restricted to loci residing in pericentromeric regions. Knockdown of the single MORC homolog in Caenorhabditis elegans also impairs transgene silencing. We propose that the MORC ATPases are conserved regulators of gene silencing in eukaryotes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional gene silencing by Arabidopsis microrchidia homologues involves the formation of heteromers.

Epigenetic gene silencing is of central importance to maintain genome integrity and is mediated by an elaborate interplay between DNA methylation, histone posttranslational modifications, and chromatin remodeling complexes. DNA methylation and repressive histone marks usually correlate with transcriptionally silent heterochromatin, however there are exceptions to this relationship. In Arabidops...

متن کامل

Two Components of the RNA-Directed DNA Methylation Pathway Associate with MORC6 and Silence Loci Targeted by MORC6 in Arabidopsis.

The SU(VAR)3-9 homolog SUVH9 and the double-stranded RNA-binding protein IDN2 were thought to be components of an RNA-directed DNA methylation (RdDM) pathway in Arabidopsis. We previously found that SUVH9 interacts with MORC6 but how the interaction contributes to transcriptional silencing remains elusive. Here, our genetic analysis indicates that SUVH2 and SUVH9 can either act in the same path...

متن کامل

Drosophila argonaute-2 is required early in embryogenesis for the assembly of centric/centromeric heterochromatin, nuclear division, nuclear migration, and germ-cell formation.

The RNA-induced silencing complex (RISC) or the RISC complex mediates RNAi and is comprised of proteins belonging to the dicer and Argonaute family proteins. Here we show that Argonaute-2 (ago-2) is required for proper nuclear migration, pole cell formation, and cellularization during the early stages of embryonic development in Drosophila. We have traced these defects back to the nuclear divis...

متن کامل

Arabidopsis AtMORC4 and AtMORC7 Form Nuclear Bodies and Repress a Large Number of Protein-Coding Genes

The MORC family of GHKL ATPases are an enigmatic class of proteins with diverse chromatin related functions. In Arabidopsis, AtMORC1, AtMORC2, and AtMORC6 act together in heterodimeric complexes to mediate transcriptional silencing of methylated DNA elements. Here, we studied Arabidopsis AtMORC4 and AtMORC7. We found that, in contrast to AtMORC1,2,6, they act to suppress a wide set of non-methy...

متن کامل

Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin.

HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Science

دوره 336 6087  شماره 

صفحات  -

تاریخ انتشار 2012